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This paper treats the steady flow fields generated inside and outside an initially 
circular, inextensible, cylindrical membrane filled with an incompressible viscous 
fluid when the membrane is placed in a two-dimensional shear flow of another viscous 
fluid. The Reynolds numbers of both the interior and exterior flows were assumed 
to be zero (‘creeping flow’), but no further approximations were made in the 
formulation. A series solution of the resulting free boundary-value problem in powers 
of a dimensionless shear rate parameter was constructed through fifth order. When 
combined with a conformal coordinate transformation this series gave accurate 
results for large deformations of the membrane (up to an aspect ratio of 2.5). The 
rather tedious algebraic manipulations required to obtain the series solution were 
done by computer with a symbol-manipulation program (REDUCE), which both 
formulated the boundary-value problems for each successive order and solved them. 
Results are presented which show how the shear rate and fluid viscosities influence 
the internal and external velocity and pressure fields, the membrane deformation and 
its ‘tank-treading ’ frequency, and the membrane tension. 

This work demonstrates that classical perturbation techniques combined with 
computer algebra offer a useful alternative to purely numerical methods for problems 
of this type. 

1. Introduction 
The problem of calculating the deformations produced in a very flexible closed 

membrane, filled with a viscous liquid, by an external flow of another viscous liquid 
is of considerable interest in suspension rheology. Further, this problem has assumed 
importance in biomechanics since the discovery of the ‘ tank-treading ’ phenomenon 
in red blood cells (Schmid-Schonbein & Wells 1969) and the attempt to use this 
phenomenon for diagnostic purposes (Sutera et al. 1985). Thus it is unfortunate that 
the problem is very intractable from a mathematical viewpoint, as it requires the 
imposition of complex boundary conditions on an a priori unknown surface. Exact 
solutions are unknown but two lines of attack have yielded useful approximate 
results. In  the first, reasonable apriori assumptions are made about the shape and 
surface velocity of the deformed membrane (Kholief & Weymann 1974; Keller & 
Skalak 1982 ; Sutera & Tran-Son-Tay 1983). This results in simplified linear boundary- 
value problems for the determination of the external and internal flow fields, but at 
the price of some inconsistency with the membrane constitutive relations which 
actually determine its shape and surface speed. The only numerical studies of the 
tank-treading problem published thus far are the finite-element analyses of Niimi & 
Sugihara (Sugihara & Niimi 1984; Niimi & Sugihara 1985) which assume the form 
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of the membrane and its velocity, and further are restricted to two-dimensional flow 
fields. 

The second approach follows G. I. Taylor’s classic analysis of liquid droplets 
(Taylor 1932) and attempts to construct a series expansion of the solution in terms 
of a small parameter measuring the membrane deformation. This type of analysis 
has been carried furthest in the recent work of Barthes-Biesel, for initially-spherical 
elastic (Barthes-Biesel 1980) and viscoelastic (Barthes-Biesel & Sgaier 1985) mem- 
branes. The main advantage of this boundary-perturbation technique is that no 
compromises need be made in the correct physical formulation of the problem. But 
its main disadvantage is that the mathematical labour required increases so rapidly 
with order that results have not been obtained beyond second order in the 
perturbation parameter, which effectively limits the accuracy of these results to 
rather small membrane deformations. 

The power and attractiveness of these perturbations methods, however, has 
recently been enhanced substantially by the availability of symbol-manipulation 
computer programs like MACSYMA (Rand 1984) and REDUCE, which render tractable 
the monumental algebraic manipulations required to compute higher-order terms in 
perturbation series. We have taken advantage of one of these programs (REDUCE, 

Rand Corp. Santa Monica, CA) to study a simplified model of a tank-treading 
membrane : deformation of an initially pressurized cylindrical membrane by a slow 
viscous shear flow. A perturbation series through fifth order in a dimensionless shear 
rate parameter is easily generated by computer algebra, and when combined with 
a coordinate transformation yields an analytical solution which is accurate for quite 
large deformations of the membrane. Although this two-dimensional problem is not 
particularly realistic physically, our primary intent is to establish the technique of 
calculation - which is applicable to more realistic problems. Further, we expect that 
the very detailed results obtained in this analysis are at least qualitatively indicative 
of the behaviour of a tank-treading erythrocyte. 

2. Mathematical formulation 
Consider a thin membrane in the shape of a circular cylinder of radius a and 

infinitely long in the axial direction. The membrane is assumed to be inextensible 
in a plane perpendicular to the axis of the cylinder, and is filled with an incompressible 
Newtonian fluid of viscosity %t; the pressure inside the membrane is initially 
constant a t  a value of p, .  The membrane is surrounded by an initially stationary 
incompressible Newtonian fluid of viscosity ep; the exterior fluid is of unbounded 
extent. Let 2 denote distance in the direction of the axis of the cylinder and f and 
9 denote rectangular coordinates in a plane perpendicular to the cylinder axis. If ex, 
ey, and ez are unit vectors along the three coordinate axes, then the fluid velocity 
can be written as 

8 = ~,e ,+~,e ,+8 ,eZ.  (1) 

8 = YQe,, (2) 

Now suppose that a simple shear flow is generated in the external fluid which, far 
from the membrane, has the form 

t Superscripts ‘ i ’  and ‘e’ placed before a symbol will designate quantities appropriate to the 
‘interior’ and ‘exterior’ of the membrane. A circumflex ‘*’ will usually indicate physical, as opposed 
to dimensionless, quantities; exceptions are the parameters “p, ip, p, ,  7, and a. Unit vectors are 
considered dimensionless. 
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FIQURE 1 .  (a) Cross-section of the undeformed membrane. (b )  Cross-section of the membrane 
deformed by a shear flow. (c) Tangential and normal unit vectors on the membrane. (d )  System 
of forces in equilibrium which act on a membrane element. 

where 7 is a constant shear rate. We assume that this external shear flow will cause 
the membrane to deform and, after a starting transient, assume a stationary shape 
and orientation; if the origin of coordinates is on the cylinder axis, the deformed 
cross-section will be symmetrical about the origin. Although the steady-state shape 
of the membrane is assumed invariant with respect to time, the membrane will have 
a velocity tangent to itself; this is the motion known as 'tank treading'. This 
circulation of the membrane will drive an interior flow inside the membrane. The 
physical problem described above is illustrated schematically in figure 1. Figure 1 ( d )  
shows the system of surface stresses acting on an element of the membrane. Note that 
9 represents the viscous stress tensor. We assume that the membrane is of negligible 
mass, and therefore the surface tractions acting on the membrane and the membrane 
tension, f', must produce a system of forces which is in equilibrium at every point of 
the membrane. Further, as the membrane is assumed inextensible, its speed will be 
the same at every point. 

Let B and 8 represent polar coordinates in a plane perpendicular to the cylinder 
axis. Let d and ri represent distances, respectively tangential and normal to the 
membrane, and s and n be the associated unit vectors (see figure 1). The problem 
can be posed in terms of a stream function $(2,#) (e.g. Langlois 1964) such that 
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where 
a a a  6 = e,.+e ,+e,-. 
ax gay ae 

The incompressibility condition is automatically satisfied by this formulation, and 
the pressure $(2, 9) is given in terms of the stream function by 

(4) 

where p is the fluid viscosity.? We assume that the inertial terms in the equations 
of motion can be neglected, and from this it follows (Langlois 1964) that the stream 
function satisfies the biharmonic equation 

6$ = pU6 x $2$e,, 

e4$J = 0. ( 5 )  

There are two important dimensionless parameters in this problem, namely 

Po the dimensionless shear rate, and 

the viscosity ratio. 

p=-  ‘P 
“P 

We define the following dimensionless variables 

If t is the curvature of the membrane, and 8 is the membrane surface speed (positive 
clockwise) we define 

K = a t ,  v = (2)~’ 
apo 

a a a  v = a 9  = e,-+e -+e  - 
ax gay z a i  

and 
(9) 

I n  terms of these dimensionless variables we may formally state the problem to 
be solved as follows. Find a simple closed curve C: r = f(@, interior stream function 
‘y9 and pressure ‘p ,  exterior stream function “y9 and pressure “p,  a membrane tension 
T(8), and a surface speed v ( B , ~ ) ,  satisfying the following equations and boundary 
conditions : 

V4 “$ = 0, W“p = V x V2 “$ez outside C, (10) 

V4 ‘$ = 0, Vip = fl  x V2 ’$e, inside C, (11) 

e $ + ~ ( ~ 2 ) ( 1 - c o s ( 2 8 ) ) ,  “p+O as r+m, W a ,  b )  

% , b = O ,  “ $ = O  onC, (13) 

‘$/ ,n+v(E,P) = 0, “ @ , , + V ( E , B )  = 0 one, (14) 

~ T - ( ’ p - ~ p ) - n ~ ~ 7 ~ n + n ~ ’ 7 ’ n  = 0 on c, (15) 

n*e7*s+n.’7*s = 0 on C, (16) 
dT 
ds 
-- 

271 

[ ( f2+f2)fd6 = 2 x ,  (17) 
J o  

t If the superscript ‘ i ’  or ‘e ’  is omitted in an equation, the equation applies to both interior 
and exterior flows. 
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and finally 'p+1 asr+O. (18) 

We also require that i$ be free of singularities. 
In the preceding equations, and throughout the remainder of this paper we use the 

comma notation for partial derivatives, that is, $, 12 = @$-/an), etc. In  (15) and (16) 
the surface tractions are to be regarded as functions of the stream functions via the 
relations (the superposed dot denotes differentiation with respect to 6 )  

The same relations hold for the interior tractions on the membrane, nSi7*n and 
nai7*s, except that e$ is replaced by i$, and the right-hand sides of (19) and (20) 
are multiplied by 8. In (15) the curvature K is to be considered a function of f(0) via 

The meaning of the boundary conditions is as follows. Equation (12a) states that 
the external stream function should represent a simple shear flow far from the 
membrane. Equation (13) states that the membrane is a streamline. Equation (14) 
states that the membrane surface speed is constant, and that the fluid velocity is 
continuous across the membrane. Equations (15) and (16) are, respectively, the 
membrane equilibrium conditions in directions normal and tangential to the mem- 
brane.t The membrane inextensibility condition is expressed by (17). Finally, the 
conditions on the pressure are given by (12 b) ,  and (18). The first of these simply states 
that the remote pressure is the reference with respect to which pressure is measured. 
Equation (18) implies that the pressure a t  the origin is maintained at p,,, regardless 
of the degree of deformation. This last boundary condition determines uniquely the 
interior pressure and is made necessary by the assumed inextensibility of the 
membrane; further comments on this internal pressure condition will appear in $7. 

Before describing the method of solution, we note that since $ satisfies the 
two-dimensional biharmonic equation it can be represented very compactly in terms 
of two analytic functions of a complex variable via the 'Goursat representation' 
(Muskhelishvili 1953; Langlois 1964). Thus if Re ( ), I m  ( ), (-), and j denote respect- 
ively the real part, imaginary part, complex conjugate, and imaginary unit, there 
exist two analytic functions x and d of a complex variable z = x+ jy such that 

(22) $(., Y )  = Re { x ( 4  +%w. 
In  terms of these analytic functions the velocity field is given by 

v,+jv, = -j($+z$'+$), 

t It can be shown that the normal viscous stress n-7'n vanishes in the problem treated in this 
paper, as a consequence of membrane inextensibility. This term, however, will be non-zero in more 
general problems where the membrane speed is not constant. 
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where the prime denotes differentiation with respect to z. The pressure is 
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p = Re (4j$'+p*), (24) 

(25) 
Further, the total force, F, + jFy, and moment M (per unit width of flow) which the 
fluid exerts on a surface represented by an arbitrary curve connecting a point A to 
a point B, can be calculated from 

where p* is a complex constant, and the viscous stresses can be expressed as 

( 7yy - T~.) + 2 j ~ , ~  = - 4 j (x" + 24"). 

F,+jFy = [ 2 ( $ + z p - $ ) ] 2 ,  (26) 

and M = Re [2j(zZq5'+zxf-x)]2, (27 1 
where [ 12 represents the value of a function at point A minus its value at  point B ;  
the force and moment are those exerted by the fluid on the right of the curve as the 
curve is traversed from A to B.  Equations (24) to (27) are valid as written for the 
exterior flow, but due to the scaling we have used in defining our dimensionless 
variables, the right-hand sides of these equations must be multiplied by p for the 
interior flow. We will use the Goursat representation for a concise presentation of our 
results. 

3. Expansion in powers of E: 

solution 
Clearly, as the dimensionless shear rate e goes to zero, our problem has the trivial 

e$ = i $  = e p  = 21 = 0, 'p = T = f = 1 .  

For e =+ 0 we seek to represent the solution as a power series in e as follows 

m co m 
e$ = z € n e , p n ) ,  i$ = z p i $ ( n ) ,  ep = z p e p ( n ) ,  j (28) 

n-1 n-1 n-1 

co W co 
'p = z f = z enrn, 

The coefficients in these expansions depend on r ,  8, and p, except that rn and Tn 
are independent of r ;  obviously, 'p(O) = ro = T, = 1. Consistent with the above 
assumptions we expand the viscous stress tensor and the surface speed as 

T = z enTn. 
n-0 n-0 n-o 

00 m m 

(PI. (29) eT = en eT(n) ,  iT = z En iTW, 2, = - z €nVU(n) 
n-1 n-1 n-1 

When these expansions are inserted into the equations and boundary conditions, 
(10) to (la), and the coefficients of like powers of e are equated, there results a sequence 
of boundary-value problems, each of which can be solved uniquely by methods 
described below. Thus, in principle, an arbitrary number of terms of the series could 
be determined, but the algebraic labour increases so rapidly that hand calculations 
are impractical beyond O(e2). The series-expansion approach, however, overcomes 
the most serious difficulty of the original problem : the boundary conditions, (13) to 
(16), to be applied on the unknown boundary, r = f(e), are 'transferred' by the 
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expansion to the fixed unit circle, r = 1. For any function, F(r ,  8; c, p),  to be evaluated 
on r = f(8) we can combine the expansions 

F(r, e)  = F(O)(r, 8)  + P(T, 8)  + P 2 ) ( r ,  8 )  + . . . , 
f(0) = 1 + Erl(8) + earz(8) + . . . , 

F ( f ( 8 ) ,  8 )  = F(O)+e(F(l) + rl Fy;) +e2(J'@)+rl J'!? + r ,  F$? + ~ ;  J'?&)+ ... . (30) 

The expansion of the equations and boundary conditions is a tedious but purely 
mechanical process. In Rao (1985) are listed the complete first-order, (O(e)) ,  and 
second-order, (O(e2)), problems. Specifically, the first-order problem is 

v 4  e$(i) = 0, v 4  i p )  = 0, 

and 

to yield 

(31) 

v ep(i) = v vz e p )  e,, V ip(l) = fl  x V2 +Wez. (32) 

Asr+co, e p + ( y )  (1 -cos (28)), e p ( b 0 .  (33a, b)  

(34) Onr = 1, e p )  = i p )  = 0, 

Also rld8 = 0, I:' 
and ip(') + 0 as r + 0. (39) 

A procedure for solving this first-order problem will be described in detail ; exactly 
the same procedure was employed to solve the higher-order problems. First we note 
that (22) implies that both the interior and exterior stream functions can be written 

(40) 
in the form 

where y9p) and +bl) are harmonic functions. As $(l) must be periodic in 8 with period 
2x we can expand in terms of cylindrical harmonics (Duff & Naylor 1966) 

$(I) = +.I"+ (r2- 1)  $f), 

00 

= Ao+Bo log(r)+ Z ( ~ 4 , r ~ + C , r - ~ )  cos(nO)+(B,~~+D,r -~)  sin@@, (41) 

with a similar expression for $-hi). This in turn, implies that each of the analytic 
functions xl(z) and #l(z) is of the formt 

n-i 

-m 
co log(%)+ r, C,Z". 

n---m 

In order that the interior stream function have no singularities the logarithmic 
term and all negative powers of z must be absent from the interior expansion. Thus 
the most general acceptable form of the interior first-order stream function is 

'$(l) = E rn{'An cos (ne) + 'B, sin (no)} + (r2 - 1) r, r n { V n  cos (no) + 'D, sin (no)}.  
03 Q) 

n-o n-o 
(43) 

t The notation here is yW) = Re{Xm(z) +?@,(z)}. 
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Turning to the exterior stream function, i t  can be seen from (33) that eq51 = O(z) and 
= O(z2) as z+ a. Further it can be shown (Rao 1985), as a consequence of (26) 

and (27) and the requirement that the resultant force and moment exerted by the 
exterior flow on the membrane be zero, that the logarithmic term is absent from both 

and "4,. Thus the most general acceptable form for the exterior first-order stream 
function is 

W 

e$(l) = r2{eA-2 cos (20) + eB-2 sin (20)}+ Z r-n{eAn cos (no) + eBn sin (no)} 
n--1 

W 

+ (r2 - 1) Z r-"{"C, cos (no) + sin (no)}. (44) 

Similar reasoning shows that (43) and (44) are also the most general acceptable 
forms for the higher-order exterior and interior stream functions, if the first term in 
braces on the right-hand side of (44) is deleted. Starting with (33) and (34), the 
complete solution to the first-order problem can be easily constructed by evaluating 
the coefficients in the trigonometric series via the boundary conditions. 

n-o 

Step 1 : Using (43) in conjunction with (34) gives 

iA, = 'B,  = 0 for all n. 

Step 2:  Imposing (35) gives 'C0 = @(l), and all the other 

'C, and 'D,  are zero. 

Step 3:  Using (44) in conjunction with (33) gives eC, = a and 

eA-2 - - - a  and eB-2 = 0. 

Step 4:  Imposing (34) gives eA2 = a, and all the other 

eAn and eBn equal to zero. 

Step 5: Imposing (35) gives eC2 = 4 and dl) = !j (this is the step which determines 
the surface speed). At  this point the first-order stream function has been uniquely 
determined as 

'$(I) = (1) ( r2-  I ) ,  (45) 

and e$.(l) = a[ (~~- l )+cos(28)  ( Z - T - ~ - ~ ~ ) ] .  (46) 

Step 6 : Next the interior and exterior pressure fields, ip(l) and ep(l) ,  are determined 
by integrating (32), subject to the boundary conditions imposed by (33b) and (39). 
Thus the first-order pressure fields are uniquely determined as 

i P (1) = 0,  e P (1) = - 2r-2 sin (28).  (47) 

Step 7 :  The first-order membrane tension, T,(@ is determined by integrating (37), 
which yields 

q e )  = C$)-sin(28), (48) 

where C$) is a constant of integration. 
Step 8:  The first-order shape change of the membrane is determined by integrating 

(36) for rl(0). In this integration the homogeneous solution is discarded as i t  
represents a rigid-body translation of membrane, leaving 

(49) r,(B) = C$) + sin (28) .  
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Step 9: Finally, the constant of integration is determined by the inextensibility 
condition, (equation (38)), as C$) = 0. 

A t  this point the complete first-order solution (e$(l), i$(l), ep(l), $(l), T,, rl, dl)) has 
been determined uniquely. 

The forms of the higher-order problems are similar to the form of the first-order 
problem as expressed by (31) to (39). Thus (31), (32), (39), and (33b) hold for all 
higher-order problems. Equation (33a) is replaced by e$(n) = o(r2) as r+  00, whereas 
the right-hand sides of (34) to (37), and the integrand of (38), depend for each order 
on the solutions of the lower-order problems. Given that for each order the interior 
and exterior stream functions can be represented by trigonometric series of the form 
of (43) and (44), the procedure outlined in Steps 1 to 9 above was followed to construct 
uniquely the solutions to the higher-order problems. Although the solution procedure 
is, in principle, straightforward and simple, as in all perturbation analyses of this type 
the size of the problems and the algebraic workload grows rapidly with order. 

Therefore the problem was programmed on a VAX 11/750 computer employing 
the algebraic symbol-manipulation program REDUCE. This program had the capa- 
bilities to execute, in symbolic terms, all the operations needed not only to solve the 
higher-order problems but also to formulate them ; these operations included series 
expansion, and differentiation and integration of polynomials and trigonometric 
functions. Due to space limitations we must forego an account of the programming 
details here; these details, together with listings of the programs actually used, are 
available in Rao (1985). 

4. The solution, up to O(e5) 

The series solution to the problem described in the preceding sections was 
constructed up to O(e5). This solution can be expressed compactly in the Goursat 
representation as follows 

lm-1 m-1 J 

where X r n ( Z )  = A m n ( B ) z n ,  # m ( z )  = x B m n ( B ) z n .  (51 1 
n n 

These forms apply to both the external and internal stream functions, and the 
coefficients A,, and B,, for m = 1 to 5 are listed in tables 1 and 2 (external and 
internal, respectively). In addition to the stream function, (50), the solution algorithm 
simultaneously yielded series for the pressure, viscous stress, membrane tension, 
membrane shape, and surface speed; these expansions will not be listed separately 
as, in principle, they can all be derived from (50). Thus, for example, the pressure 
can be computed directly via (34), and the membrane shape expansion 

a, 

r = l +  x rn(8)sn 
n-i 

can be obtained, through O(e5),  from the condition $ = 0 on the membrane, using 
either the external or internal stream function. For reference in further discussion, 
however, we note the following two points. To O(aZ) the membrane shape is given 
by 

r = 1 + E  sin (28)-cS2{1 - (1  +B)  cos (28)+f cos (48)}+ ... ; (52) 
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m 1  2 3 4 5 

n 
2 4  0 0 0 0 
0 - t  0 0 -&#-2&-tfif 

- 6 O O t  j(-W-%Y) - YP -%P-% 
- 8 0 0 0  ij YP+W 
-10 0 0 0 0 -9 

1 f O O  0 0 
- 1  t -tj -+(38+4) j + 28 + 3 

- 7 0 0 0  -p,j -w-w 
- 9 0 0 0  0 7 

Note: All coefficients other than those listed, in the polynomials defining 

-2 -1 tj t(B+1) j( -l# - + 8) -I# -&# -p&+ P 
A,, -4 0 -3 - iWB+ 17) j(lW + YP + Y )  w +w + 9pB+@k 

+@W + %YB+ I 
-bg"-pg!-y-m Bmn - 3  0 3 &(8B+21) j( -lV-%?P-%?) 81 

-5 0 0 -1 j W + W  3P+WP+;Sb 

and e#m, are zero. 

TABLE 1. Coefficients in the expansion of the external complex etream function 

= X A m n ( P )  zn and e$m(z )  = Z B m n ( B ) z n  
n 

m 1  2 3 4 5 

n 
0 - f  0 4(4/9+9) 0 -'W -VP -W-% 
2 0 t j  -$3(/3+1) j ( - - 3P - #I +?tP + WP +# 

j(Y+i) -W-V-% 
W+B -U' 

A m n  4 0 0 ik 

tJ -2% 

6 0 0 0  
8 0 0 0  

1 : 0 -t(P+l) 0 '# +bBg + 38 + 9 
3 0 -:j $ (B+l)  + B + 43 -w -zw - YfP -# 

Bmn 5 0 0 -& j( -$-!!I &P+V+# 
7 0 0 0  &j -&!!$-a 
9 0 0 0  0 & 

Note: All coefficients other than those listed, in the polynomials 'Xm and i$m, are zero. 

TABLE 2. Coefficients in the expansion of the internal complex stream function 

' X m ( z )  = X A m n ( B ) z n  and V m ( z )  = X B m n ( B ) z n  
n 

for small 8 this is approximately an ellipse with its major axis inclined to the 
horizontal direction by an angle 

e, =+n-+(i+p)+ .... (53) 

(54) 

To O(e5) the surface speed is 

2, = * - (p++)E3+{/33+?p+3p+g}€5+ ... . 
Note that the surface speed was found to be an odd function of 8 ,  as it must be on 
physical grounds. 
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0 

- 
h 

h - 

- 25 

FIGURE 2. Magnitudes of the left-hand sides of the boundary conditions, (13), (14), (15) and (16) 
as a function of E at two positions 6 = in and 6 = in on the membrane, with B = 2. The ordinates 
were computed by inserting into the left-hand sides of the boundary conditions the truncated O(@)  
(untransformed) expansion for each variable appearing in the boundary conditions and evaluating 
the required expressions with r ( 6 ; ~ , / 3 )  given by the O ( h )  expansion of the membrane shape. Note 
that with log-log scales each curve approaches a straight line with a slope of 6 as E+O,  verifying 
that the boundary conditions are satisfied through 0 ( c 6 ) .  

One serious problem with computer-algebra solutions which produce large series 
expansions is that of verification : How is one to have confidence that the solution does 
indeed satisfy the boundary conditions to the stated order? (The governing 
differential equations are obviously satisfied by a solution of the given form.) We have 
accomplished this verification numerically. The right-hand sides of (13) to (17) were 
computed, using the truncated O(e5) expansions of all the field variables which had 
been obtained as the solution, and the logarithms of the absolute values of these 
right-sides were plotted - for two values of 0 - versus In ( E ) ,  as in figure 2. It can be 
seen that as E approaches zero each of the curves in figure 2 approaches a straight 
line with a slope of 6. This shows that if the O(e5) solution we have constructed is 
inserted into the boundary conditions, then the values of the boundary operators 
differ from the required value of zero by quantities of O ( P )  - confirming that our 
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solution satisfies the boundary conditions through O ( 8 ) .  On this basis one can have 
confidence that (50) together with the coefficients listed in tables 1 and 2 is the unique 
expansion of the exact solution to this problem through fifth order in E .  

Rao (1985) has undertaken a careful examination of the accuracy of this solution. 
Without going into details, some of which will be repeated later in this paper, it can 
be stated that he concluded that (i) all field variables - membrane shape, tension, 
viscous stresses, pressure, and velocities - were accurate for membrane deformations 
up to an aspect ratio, (rmax/rrnin), of about 1.5, and (ii) the membrane shape and 
streamlines were accurate up to an aspect ratio of about 1.8. This is an improvement 
on an expansion truncated at  O(sa) (like that of Barthes-Biesel 1980)) which is only 
accurate in the membrane shape up to an aspect ratio of 1.5 - and correspondingly 
less for velocities and stresses. This rather modest improvement in accuracy of the 
O ( 8 )  expansion versus the 0(e2) expansion is somewhat disappointing and can be 
traced to a probably limited range of convergence of the expansion of the membrane 
shape function in powers of e. As an analogy, i t  can be easily shown (Rao 1985) that 
the expansion of an ellipse r = {(cos2 (@/a2) + (sin2 (0)/b2)}-i, subject to the 
(approximate) constraint of constant length a2+b2 = constant, in powers of the 
eccentricity will diverge when the aspect ratio (a /b)  exceeds 1 / 3  = 1.732 . . . which is 
close to the accuracy-limiting value of 1.8 found by Rao. 

The range of accuracy of our solution can be extended considerably, however, by 
introducing a conformal mapping from the physical plane z = x+ jy to an auxiliary 
plane 5 = 6 + jv.  This does not require re-solving the problem, and can be accomplished 
with little additional work. We will introduce this expansion and examine the 
accuracy of the transformed solution in the next section, before proceeding to a 
presentation of detailed results. 

5. A conformal transformation 
As e approaches zero the deformed membrane shape approaches an ellipse; the 

major axis of this ellipse starts at  an inclination of 45' to the horizontal (i.e. the shear 
direction) when s+O and rotates towards the horizontal as E increases. Thus although 
the problem is formulated and solved most easily in cylindrical polar coordinates, 
a more 'natural' coordinate system for this problem is one where one family of 
coordinate curves are inclined ellipses. It was expected - and was subsequently 
confirmed - that the introduction of such a coordinate transformation would improve 
the range of validity of our solution. A conformal transformation was chosen because 
this retains the simplicity of the Goursat representation for the calculation of 
velocities and stresses. To map the region outside and including the membrane we 
have used the simple Joukowski transformation 

where 

(see (53)). Thus as E approaches zero the membrane is mapped onto the unit 
circle in the c-plane. This transformation maps the 5-plane outside the circle 151 = d 
onto the entire z-plane with a branch cut running from z = -2dejs* to z = 2deje*; as 
the mapping has singularities inside the membrane it is inappropriate for transform- 
ing the interior flow. There is indeed, as there must be by the Riemann mapping 
theorem, a conformal transformation which maps the interior of the unit circle in the 
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c-plane onto the interior of an ellipse in the z-plane without singularities, but this 
transformation is so complicated (Kober 1957) that i t  was not considered worth 
transforming the interior flow - particularly as almost all quantities of interest can 
be calculated by an application of the simple Joukowski transformation, equation 
(55),  to the exterior flow. 

If the transformation equation (55) is inserted into (51), and the latter are expanded 
in powers of E and truncated at 0 ( e 6 )  one obtains the unique expansion of the solution 
outside and on the membrane in terms of the transformed variable 5 = E+ jq = pej" 
and the parameters E and p. Thus 

where the coefficients Amn and 8,, are listed for m = 1 to 5 in table 3. All variables 
of interest can be computed from (56) via the Goursat representation, keeping in mind 
that the physical independent variables (x, y or r ,  0 )  are related to the transformed 
variables (6 ,q  or p ,a )  via (55). For example, the exterior stream function is given 

and the external pressure is given by 

m-1 d5 

The above expressions for "$ and "p, as well as the corresponding expressions for all 
other variables, must be expanded in powers of B and truncated at O(e5) before 
computation, in order to maintain consistency with the O(s5)  accuracy of the original 
solution, (50) and (51). In  the 5-plane the image of the membrane, "$ = 0 is given 

p ( a ; E , p )  = 1-+."-€3{&?."+p+l} cos(2a) 
by 

+ e4{(l@ ++p+ g) + (g3 + 3p2 + 3/3+ f) sin (2a) 

- (M2 + /? + 1 ) cos (401)) + e5{ (g3 + 3p2 + 2p + f) sin (4a) 

+(j3P"+g"+p2+yp+g) cos(2a)  

-(g2+P+1) cos(6a)}+ ... . (59) 

Also, the membrane tension in transformed coordinates is 

T(a ; E ,  p) = 1 - B cos (2a) - e2{ (p+ 1 ) sin (201) +a cos (401)) 

-e3(a(/3+ 1) sin (4a)- ($!?2+++i) cos (2a)+Q cos (6a)) 

- e4{(lyB2 + p+ 1 )  - (u3 + +p +yp+ &) sin (2a) 

+Q(P+ 1) sin (6a) - ($12 +v ++) cos (4a) 

+ & cos (Sa)} + e5{ (ap" - v2 - i/3 + 9) sin (4a) 

-&(p+ 1) sin (801)- (&34+&33 

+sp+gp+yL) cos(2a) 

+ (W2 + %+ %) cos ( 6 4  

- & cos ( lOa)} + . . . . 
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FIGURE 3. Convergence and accuracy of the conformally transformed expansions. (a) Successive 
terms in the expansion of the external shear stress, 

6 

risers = E Anen,  

on the membrane at four positions, with 6 = 0.25 and /3 = 0.5. Note the rapid decrease in the 
magnitude of successive terms indicating convergence. (a) Same as (a) except that 6 = 0.35. Note 
the slow decrease of successive terms indicating marginal convergence or divergence. (c) Accuracy 
limits of the conformally-transformed O($) expansions for four variables. Each curve shows the 
maximum value that 6 can assume for a given @ in order that the absolute value of the last (i.e. 
O(e5)) contribution to the variable be everywhere less than 5 %  of the 'characteristic magnitude' 
of that variable. The 'characteristic magnitude' measures the typical values of a variable and was 
chosen as the maximum absolute value that the variable assumes on the membrane at a given E 

and b, as computed from the O($) expansion. 

n-0 

An examination of the accuracy of the transformed solution reveals the improve- 
ment achieved by the conformal mapping. Figure 3 (a, b) illustrates for one variable, 
the external shear stress on the membrane, how the magnitudes of the successive 
terms in the series vary with the order, n, at several values of the polar angle 8, with 
/3 = 0.5. For E = 0.25 (figure 3a) the terms decrease rapidly and the series clearly 
converges for all 8, but when E is increased to 0.35 the terms decrease slowly, at least 
for certain values of 8, and the series begins to show signs of divergence. As an 
arbitrary but practical limit of accuracy we have computed the maximum value of 
E for which the O ( @ )  term in the series for a given variable contributes no more to 
the value of the variable than 5 % of the 'characteristic magnitude' of that variable. 
The results are presented in figure 3(c) for four variables and indicate that (i) the 
maximum permitted value of E for an accurate solution decreases as /3 increases (this 
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FIGURE 4. Streamline patterns and membrane shapes for several values of E and p. 

is true for all variables), and (ii) at a given E and /3 the viscous stress and pressure 
(which depend on higher derivatives of the stream function) are generally less 
accurate than the membrane shape and tension. Without the conformal transform- 
ation the accuracy-limiting values of E would be much smaller - for example, for the 
tension E would have to be less than 0.30 (versus 0.45) to achieve comparable accuracy 
with /3 = 0. All the results presented in the next section were computed from the 
conformally transformed expansions equations (56), and we have usually stayed 
within the limits indicated by figure 3 (c), so that the results displayed can be expected 
to agree with the exact solution to within graphical accuracy. 

6. Results 
Typical streamline patterns and deformed membrane shapes are shown in figure 4. 

The membrane deformation increases rapidly with increasing dimensionless shear 
rate, E ,  attaining an aspect ratio of about 2.5 when e = 0.45. The influence of the 
viscosity ratio p on the streamline pattern is not strong but nevertheless a sufficiently 
large change in /3 can produce marked changes in the membrane shape, as a 
comparison of the two lower graphs of figure 4 will confirm. No interior streamlines 
are shown in the two right-hand graphs of figure 4 because the un-transformed 
interior solution is not accurate for such large membrane deformations. Isobars of 
interior and exterior pressure are shown in figure 5. Both inside and outside the 
membrane there are two pockets where the pressure is above average and two where 
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FIQURE 5. Isobars of the external and internal pressure fields for several values of E and 8. In the 
exterior flow solid and dashed curves indicate, respectively, positive and negative pressures ; 
the pressure values are p = f0.05, fO.lO, f0.20, f0.30, with p = f0.05 being the pressure 
on the isobars furthest from the membrane. In  the interior flow the solid and dashed 
curves indicate, respectively, pressures above and below p = 1; the pressure values are 
p = 1-0.006,1-0.012,1+0.003,1+0.014, with the first and third of these closest to  the centre. 
(The dotted internal isobars at E = 0.2 and 8 = 2.0 are extrapolated, as they could not be computed 
accurately from the untransformed interior expansion with these parameter values.) 

it is below average. The peaks and troughs of the exterior pressure occur at the points 
of minimum and maximum membrane curvature, whereas the peaks and troughs of 
the interior pressure occur about midway between these points of extreme curvature. 

The variation of the membrane tension, T, along the membrane as a function of 
e and /3 is shown in figure 6;  the tension varies strongly with E and weakly with /3. 
The minimum tension occurs near the point of maximum membrane curvature and 
vice versa. Figure 7 ( 6 )  shows the exterior pressure, "p, along the membrane. This is 
a strong function of e but a very weak function of p, and to a first approximation 
the exterior pressure resembles the membrane tension. The interior pressure was 
computed from the conformally-transformed membrane tension and exterior pressure 
via the boundary condition (15), and is shown in figure 7(a) .  Within the range of 
validity of our solution the interior pressure varies only weakly with both E and 8. 
The interior and exterior viscous shear stresses on the membrane are shown 
respectively in figure 8(a)  and 8 ( 6 ) .  The exterior shear stress is comparable to the 
exterior and interior pressures, but the interior shear stress remains very small for 
all values of E and f i  where our solution is accurate. 
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FIQURE 6. Membrane tension as a function of angular position for several values of 6 and /?. 

Finally, figures 9 and 10 show the dependences of some global characteristics on 
E and p. In  the upper part of figure 9 the aspect ratio, (rmax/rmin), of the deformed 
membrane is plotted as a function of E for various constant values of p. The 
deformation increases somewhat faster than linearly with E ,  and at sufficiently large 
values of E also increases with /3. The expanded scale inset to this graph shows, 
however, that for low values of E the deformation actually decreases with p - but this 
effect is small. Figure 9 ( b )  shows that the major axis of the deformed membrane 
rotates toward the horizontal as E increases a t  constant p;  this angle of inclination 
also decreases if p is increased a t  constant E - that  is, as the interior becomes more 
viscous relative to the exterior. I n  figure 10(a) we have plotted the tangential 
component of the external velocity on the membrane for p = 0, as a function of 
position for several values of e.7 The boundary conditions require that this speed be 
constant, and it is so for sufficiently low E ;  at E = 0.3 fluctuations appear and increase 
rapidly with increasing E ,  indicating a breakdown in convergence of the velocity 
expansions, but even at E = 0.4 the root-mean-square deviation of the computed 
surface speed from its mean value is less than 15% of the mean. The arclength- 
averaged surface speeds are shown, as functions of E and 8, in figure 10 ( b ) ,  and these 
speeds agree with (54) if E is not too high. It can be seen that the dimensionless surface 

t This tangential velocity component was actually computed as follows: 
Using (23) we can write the membrane velocity in terms of its tangential and normal components 

as vn-jva = -e-J"($+z?'+X') where w is the argument of (dzlda) = (dz/dc) (dc/da) on the 
membrane. First, the conformal mapping, (55), was  used to transform the expression in parentheses 
on the right-hand side of the above equation for the membrane velocity to a function of 5 and E ,  

and the result was expanded and truncated at 0(e5) .  Then Con the membrane was taken as p(a) d", 
with p(a) given by (59) ; this 5 was inserted into the truncated velocity formula, and also used to 
compute o as a function of a on the membrane, which was also inserted into this formula. The 
imaginary part of the resulting expression is plotted as the tangential velocity on the membrane 
in figure 10(a). 
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several values of E and 8. The internal pressure is computed from (15). 

position for 

speed increases somewhat less than linearly with E at constant 8, and decreases with 
a t  constant E. 

7. Discussion 
In  this study of a tank-treading cylindrical membrane we have retained the major 

advantage of classical perturbation analysis while simultaneously mitigating to a 
large extent the major disadvantage of this technique. The major advantage retained 
is that no compromises or a priori assumptions need be made in the formulation of 



302 G. I .  Zahalak, P. R. Rao and S. P. Sutera 

(a * '7 

I 0 

0.5 0.3 
1 .o 
1.5 
2.0 

- 
---- 
- -. . -. - . 
-.-.- 

.. -. . 

0.03 

' 4 m e m  O 

-0.03 

0.3 

(ded 

FIGURE 8. Internal and external shear stress on the membrane as a function of angular position 
for various values of e and /3. The interior shear stress was calculated from (16). 

the problem - all for complex physically relevant boundary conditions have been 
imposed. The major disadvantage which we have overcome by a combination of 
computer algebra and coordinate transformation is the usually restricted validity of 
such analyses to rather small deformation. Our analytical results appear to be 
accurate for quite large deformations - an aspect ratio of about 2.5 for the membrane 
shape and (exterior) stream function, and an aspect ratio of about 2 for the stresses. 
Perhaps the major value of the additional terms obtained by computer algebra is that 
they have permitted a rational assessment of the accuracy of the perturbation 
solution. In contrast, an examination of the three-dimensional first-order perturba- 
tion solution for liquid droplets by Cox (Cox 1968) and the second-order solution for 
elastic capsules by Barthes-Biesel (Barthes-Biesel 1980) show that the membrane 
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FIQURE 9. (a) Aspect ratio of the deformed membrane as a function of E and 8. The inset shows 
versus E on an expanded scale the diflerencee (rmax/rmin) - ( / ) in aspect ratios at several 
values of /3 and the aspect ratio at = 0. (b)  Angle of inclir%%r%t(ikjor axis of the deformed 
membrane to the horizontal (i.e. remote zero-velocity plane) direction, as a function of E and /3. 

shapes yielded by both these analyses develop negative curvature at an aspect ratio 
of about 1.5, as does our untransformed solution if it is truncated at O(ee). This 
reversal of membrane curvature is a mathematical artifact, as it can be eliminated 
by retaining more terms in the series; for aspect ratios greater than 1.5 the predicted 
cross-sections of the membrane resemble ‘dumb-bells ’ and the associated solutions 
can no longer be assumed accurate. Of course, the analyses of Cox and Barthes-Biesel 
are of three-dimensional problems and therefore inherently much more complex than 
the two-dimensional problem we have considered. 

Published numerical studies of the tank-treading problem have been two- 
dimensional and have invariably assumed that the membrane is an ellipse of given 
aspect ratio and orientation (Sugihara & Niimi 1984; Niimi & Sugihara 1985). 
Figure 4 shows, however, that the membrane cross-section may be markedly non- 
elliptic - for example when E = 0.3 and /3 = 2.0. This probably does not affect the 
gross streamline pattern very much, but it could lead to substantial errors in variables 
like the membrane tension which are strongly affected by the membrane curvature. In 
our approach one need not - indeed, one cannot - make a priori assumptions about 
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FIQURE 10. (a) Tangential component of the external velocity on the membrane, given by the 
transformed expansion as a function of angular position for several values of E with p = 0. The 
dashed lines are averages (weighted by arc length) of the tangential velocity (surface speed). (b)  
Average surface speed as a function of B and p. 

membrane shape, orientation, and speed, as all this information is provided by the 
solution. 

Our main concern in this paper was to  establish and validate a method of analysis 
for a class of problems, and therefore we have chosen what is probably the simplest 
problem in this class : the inextensible membrane. Inextensibility has required that 
we specify the pressure a t  the centre of the membrane in order to determine the 
interior pressure uniquely. This condition is somewhat artificial in the context of the 
physical problems which motivated this study, but i t  probably has no important 
impact on the utility of the analytical method or the significance of the results. Rao 
has constructed the series solution to  the problem of a pressurized elastic, rather than 
inextensible, cylinder (Rao 1985) up to  O(e2) and has found - not unexpectedly - that 
this solution closely resembles the one presented in this paper. Further, many aspects 
of our solution agree, a t  least qualitatively, with results reported by Barthes-Biesel 
for a spherical elastic capsule, including an increase in tank-treading frequency with 
shear-rate, a concomitant tilting of the major axis toward the shear planes, and an 
increase of the aspect ratio of the deformed membrane with shear rate and viscosity 



Large deformations of a membrane by a viscous shear flow 305 

ratio, p. (She does not mention a decrease of the deformation with increasing /3 at low 
shear rates, as shown in the inset to figure 9 (a) . )  Barthes-Biesel finds no effect on /9 
on the tank-treading frequency, and this is probably because in her problem as in 
ours (see (54)) this effect first appears in terms of O(ss), whereas her expansions do 
not go beyond O(s2). 

The results presented herein demonstrate that classical perturbation techniques 
combined with computer algebra offer an attractive alternative to purely numerical 
approaches for solving certain types of difficult nonlinear large-deformation prob- 
lems. Our analytical technique and two-dimensional model permits a very detailed 
examination of the streamlines, velocities, and stresses. Once the basic solution 
algorithm has been programmed it requires but minor modifications to account for 
various alternative membrane properties, including nonlinear viscoelasticity and 
bending rigidity. We have several of these problems under study and the results will 
be reported in due course. 

This work was supported by Grant HL-12839 from the National Heart, Lung and 
Blood Institute, US Public Health Service. 
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